On a formula of Beniamino Segre.
We consider nonsingular polynomial maps F = (P,Q): ℝ² → ℝ² under the following regularity condition at infinity : There does not exist a sequence of complex singular points of F such that the imaginary parts tend to (0,0), the real parts tend to ∞ and . It is shown that F is a global diffeomorphism of ℝ² if it satisfies Condition and if, in addition, the restriction of F to every real level set is proper for values of |c| large enough.
We show that the GVC (generalized vanishing conjecture) holds for the differential operator and all polynomials , where is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
We associate to a given polynomial map from to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
Given a real n×n matrix A, we make some conjectures and prove partial results about the range of the function that maps the n-tuple x into the entrywise kth power of the n-tuple Ax. This is of interest in the study of the Jacobian Conjecture.