The degree of the inverse of a polynomial automorphism.
We describe the polynomials P ∈ ℂ[x,y] such that . As applications we give new examples of bad field generators and examples of families of polynomials with smooth and irreducible fibers.
Let k be an algebraically closed field of characteristic zero and a Drużkowski mapping of degree ≥ 2 with det JF = 1. We classify all such mappings whose Jacobian matrix JF is symmetric. It follows that the Jacobian Conjecture holds for these mappings.
Let 𝕂 denote ℝ or ℂ, n > 1. The Jacobian Conjecture can be formulated as follows: If F:𝕂ⁿ → 𝕂ⁿ is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism. Although the Jacobian Conjecture is still unsolved even in the case n = 2, it is convenient to consider the so-called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n>1. We present the reduction of (GJC) to the case of F of degree 3 and of symmetric homogeneous...
There are nontrivial dualities and parallels between polynomial algebras and the Grassmann algebras (e.g., the Grassmann algebras are dual of polynomial algebras as quadratic algebras). This paper is an attempt to look at the Grassmann algebras at the angle of the Jacobian conjecture for polynomial algebras (which is the question/conjecture about the Jacobian set– the set of all algebra endomorphisms of a polynomial algebra with the Jacobian – the Jacobian conjecture claims that the Jacobian...
We show that every local polynomial diffeomorphism (f,g) of the real plane such that deg f ≤ 3, deg g ≤ 3 is a global diffeomorphism.
We investigate an approach of Bass to study the Jacobian Conjecture via the degree of the inverse of a polynomial automorphism over an arbitrary ℚ-algebra.
We discuss several additional properties a power linear Keller map may have. The Structural Conjecture of Drużkowski (1983) asserts that certain two such properties are equivalent, but we show that one of them is stronger than the other. We even show that the property of linear triangularizability is strictly in between. Furthermore, we give some positive results for small dimensions and small Jacobian ranks.
We present some estimates on the geometry of the exceptional value sets of non-zero constant Jacobian polynomial maps of ℂ² and their components.