A classification of reductive linear groups.
The main purpose of this article is to give an explicit algebraic action of the group of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.
2000 Mathematics Subject Classification: Primary: 14R10. Secondary: 14R20, 13N15.Let R be a UFD containing a field of characteristic 0, and Bm = R[Y1, . . . , Ym] be a polynomial ring over R. It was conjectured in [5] that if D is an R-elementary monomial derivation of B3 such that ker D is a finitely generated R-algebra then the generators of ker D can be chosen to be linear in the Yi ’s. In this paper, we prove that this does not hold for B4. We also investigate R-elementary derivations D of Bm...
A concept of a slice of a semisimple derivation is introduced. Moreover, it is shown that a semisimple derivation d of a finitely generated commutative algebra A over an algebraically closed field of characteristic 0 is nothing other than an algebraic action of a torus on Max(A), and, using this, that in some cases the derivation d is linearizable or admits a maximal invariant ideal.
A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line , then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.
We give a short proof of a counterexample (due to Daigle and Freudenburg) to Hilbert's fourteenth problem in dimension five.
We survey counterexamples to Hilbert’s Fourteenth Problem, beginning with those of Nagata in the late 1950s, and including recent counterexamples in low dimension constructed with locally nilpotent derivations. Historical framework and pertinent references are provided. We also include 8 important open questions.
It is explained that the following two problems are equivalent: (i) describing all affine rulings of any given weighted projective plane; (ii) describing all weighted-homogeneous locally nilpotent derivations of k[X,Y,Z]. Then the solution of (i) is sketched. (Outline of our joint work with Peter Russell.)
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.