Page 1

Displaying 1 – 2 of 2

Showing per page

Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré

Michel Raibaut (2012)

Annales de l’institut Fourier

Soit k un corps de caractéristique nulle, P un polynôme de Laurent en d variables, à coefficients dans k et non dégénéré pour son polyèdre de Newton à l’infini. Soit d fonctions non constantes f l à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée P ( f ) en termes du polyèdre de Newton à l’infini de P . Pour P égal à la somme x 1 + x 2 nous obtenons une formule...

Finite extensions of mappings from a smooth variety

Marek Karaś (2000)

Annales Polonici Mathematici

Let V, W be algebraic subsets of k n , k m respectively, with n ≤ m. It is known that any finite polynomial mapping f: V → W can be extended to a finite polynomial mapping F : k n k m . The main goal of this paper is to estimate from above the geometric degree of a finite extension F : k n k n of a dominating mapping f: V → W, where V and W are smooth algebraic sets.

Currently displaying 1 – 2 of 2

Page 1