Pencils of irreducible rational curves and plane Jacobian conjecture
In certain cases the invertibility of a polynomial map F = (P,Q): ℂ²→ ℂ² can be characterized by the irreducibility and the rationality of the curves aP+bQ = 0, (a:b) ∈ ℙ¹.
In certain cases the invertibility of a polynomial map F = (P,Q): ℂ²→ ℂ² can be characterized by the irreducibility and the rationality of the curves aP+bQ = 0, (a:b) ∈ ℙ¹.
A non-zero constant Jacobian polynomial map F=(P,Q):ℂ² → ℂ² has a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension to a morphism p:X → ℙ¹ in a compactification X of ℂ² has the following property: the restriction of p to each irreducible component C of the compactification divisor D = X-ℂ² is of degree 0 or 1.
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be “mimicked” by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen’s theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22, x2,ј, xn). We show...
In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...