A Class of Norms of Iterative Methods for Solving Systems of Linear Equations.
Assume that K is an arbitrary field. Let (I, ⪯) be a two-peak poset of finite prinjective type and let KI be the incidence algebra of I. We study sincere posets I and sincere prinjective modules over KI. The complete set of all sincere two-peak posets of finite prinjective type is given in Theorem 3.1. Moreover, for each such poset I, a complete set of representatives of isomorphism classes of sincere indecomposable prinjective modules over KI is presented in Tables 8.1.
A complete list of positive Tits-sincere one-peak posets is provided by applying combinatorial algorithms and computer calculations using Maple and Python. The problem whether any square integer matrix is ℤ-congruent to its transpose is also discussed. An affirmative answer is given for the incidence matrices and the Tits matrices of positive one-peak posets I.
We consider the permanent function on the faces of the polytope of certain doubly stochastic matrices, whose nonzero entries coincide with those of fully indecomposable square -matrices containing the identity submatrix. We show that a conjecture in K. Pula, S. Z. Song, I. M. Wanless (2011), is true for some cases by determining the minimum permanent on some faces of the polytope of doubly stochastic matrices.
We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such...