Page 1

Displaying 1 – 10 of 10

Showing per page

Limit distributions of many-particle spectra and q-deformed Gaussian variables

Piotr Śniady (2006)

Banach Center Publications

We find the limit distributions for a spectrum of a system of n particles governed by a k-body interaction. The hamiltonian of this system is modelled by a Gaussian random matrix. We show that the limit distribution is a q-deformed Gaussian distribution with the deformation parameter q depending on the fraction k/√n. The family of q-deformed Gaussian distributions include the Gaussian distribution and the semicircular law; therefore our result is a generalization of the results of Wigner [Wig1,...

Limiting spectral distribution of XX' matrices

Arup Bose, Sreela Gangopadhyay, Arnab Sen (2010)

Annales de l'I.H.P. Probabilités et statistiques

The methods to establish the limiting spectral distribution (LSD) of large dimensional random matrices includes the well-known moment method which invokes the trace formula. Its success has been demonstrated in several types of matrices such as the Wigner matrix and the sample covariance matrix. In a recent article Bryc, Dembo and Jiang [Ann. Probab.34 (2006) 1–38] establish the LSD for random Toeplitz and Hankel matrices using the moment method. They perform the necessary counting of terms in the...

Localisation pour des opérateurs de Schrödinger aléatoires dans L 2 ( d ) : un modèle semi-classique

Frédéric Klopp (1995)

Annales de l'institut Fourier

Dans L 2 ( d ) , nous démontrons un résultat de localisation exponentielle pour un opérateur de Schrödinger semi-classique à potentiel périodique perturbé par de petites perturbations aléatoires indépendantes identiquement distribuées placées au fond de chaque puits. Pour ce faire, on montre que notre opérateur, restreint à un intervalle d’énergie convenable, est unitairement équivalent à une matrice aléatoire infinie dont on contrôle bien les coefficients. Puis, pour ce type de matrices, on prouve un résultat...

Localization and delocalization for heavy tailed band matrices

Florent Benaych-Georges, Sandrine Péché (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider some random band matrices with band-width N μ whose entries are independent random variables with distribution tail in x - α . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when α l t ; 2 ( 1 + μ - 1 ) , the largest eigenvalues have order N ( 1 + μ ) / α , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov...

Currently displaying 1 – 10 of 10

Page 1