Page 1

Displaying 1 – 4 of 4

Showing per page

Some results on quasi-t-dual Baer modules

Rachid Tribak, Yahya Talebi, Mehrab Hosseinpour (2023)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and let M be an R -module with S = End R ( M ) . Consider the preradical Z ¯ for the category of right R -modules Mod- R introduced by Y. Talebi and N. Vanaja in 2002 and defined by Z ¯ ( M ) = { U M : M / U is small in its injective hull } . The module M is called quasi-t-dual Baer if ϕ ϕ ( Z ¯ 2 ( M ) ) is a direct summand of M for every two-sided ideal of S , where Z ¯ 2 ( M ) = Z ¯ ( Z ¯ ( M ) ) . In this paper, we show that M is quasi-t-dual Baer if and only if Z ¯ 2 ( M ) is a direct summand of M and Z ¯ 2 ( M ) is a quasi-dual Baer module. It is also shown that any direct summand of a...

Some results on the co-intersection graph of submodules of a module

Lotf Ali Mahdavi, Yahya Talebi (2018)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring with identity and M be a unitary left R -module. The co-intersection graph of proper submodules of M , denoted by Ω ( M ) , is an undirected simple graph whose vertex set V ( Ω ) is a set of all nontrivial submodules of M and two distinct vertices N and K are adjacent if and only if N + K M . We study the connectivity, the core and the clique number of Ω ( M ) . Also, we provide some conditions on the module M , under which the clique number of Ω ( M ) is infinite and Ω ( M ) is a planar graph. Moreover, we give several...

Strict Mittag-Leffler conditions and locally split morphisms

Yanjiong Yang, Xiaoguang Yan (2018)

Czechoslovak Mathematical Journal

In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.

Currently displaying 1 – 4 of 4

Page 1