On a Class with Rings with Inverse Weak Algorithm.
In 1964, Bertram Yood posed the following problem: whether the intersection of all closed maximal regular left ideals of a topological ring coincides with the intersection of all closed maximal regular right ideals of this ring. It is proved that these two intersections coincide for advertive and simplicial topological rings and, using this result, it is shown that the topological left radical and the topological right radical for every advertive and simplicial topological algebra coincide.
In this paper we extend the concept of an -fuzzy (characteristic) left (resp. right) ideal of a ring to a semiring , and we show that each level left (resp. right) ideal of an -fuzzy left (resp. right) ideal of is characteristic iff is -fuzzy characteristic.
We study some properties of -fuzzy left (right) ideals of a semiring related to level left (right) ideals.
Siano un ideale di un anello e una congruenza su un semigruppo . Consideriamo l'anello semigruppo come un'immagine omomorfa dell'anello semigruppo . Questo è fatto in tre passi: prima studiando l'anello semigruppo , poi e infine combinando i due casi speciali. In ciascun caso, determiniamo l'ideale che è il nucleo dell'omomorfismo in questione. I risultati corrispondenti per le -algebre, dove è un anello commutativo, possono essere facilmente dedotti. Alcuni raffinamenti, casi speciali...
Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...