Page 1

Displaying 1 – 7 of 7

Showing per page

Embedding torsionless modules in projectives.

Carl Faith (1990)

Publicacions Matemàtiques

In this paper we study a condition right FGTF on a ring R, namely when all finitely generated torsionless right R-modules embed in a free module. We show that for a von Neuman regular (VNR) ring R the condition is equivalent to every matrix ring Rn is a Baer ring; and this is right-left symmetric. Furthermore, for any Utumi VNR, this can be strengthened: R is FGTF iff R is self-injective.

Eventually semisimple weak F I -extending modules

Figen Takıl Mutlu, Adnan Tercan, Ramazan Yaşar (2023)

Mathematica Bohemica

In this article, we study modules with the weak F I -extending property. We prove that if M satisfies weak F I -extending, pseudo duo, C 3 properties and M / Soc M has finite uniform dimension then M decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if M satisfies the weak F I -extending, pseudo duo, C 3 properties and ascending (or descending) chain condition on essential submodules then M = M 1 M 2 for some semisimple submodule M 1 and Noetherian (or Artinian, respectively)...

Extending modules relative to a torsion theory

Semra Doğruöz (2008)

Czechoslovak Mathematical Journal

An R -module M is said to be an extending module if every closed submodule of M is a direct summand. In this paper we introduce and investigate the concept of a type 2 τ -extending module, where τ is a hereditary torsion theory on Mod - R . An R -module M is called type 2 τ -extending if every type 2 τ -closed submodule of M is a direct summand of M . If τ I is the torsion theory on Mod - R corresponding to an idempotent ideal I of R and M is a type 2 τ I -extending R -module, then the question of whether or not M / M I is...

Currently displaying 1 – 7 of 7

Page 1