The search session has expired. Please query the service again.
Let be a preprojective algebra of type , and let be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories for an injective -module, and we introduce a mutation operation between complete rigid modules in . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to .
We prove that the study of the category C-Comod of left comodules over a K-coalgebra C reduces to the study of K-linear representations of a quiver with relations if K is an algebraically closed field, and to the study of K-linear representations of a K-species with relations if K is a perfect field. Given a field K and a quiver Q = (Q₀,Q₁), we show that any subcoalgebra C of the path K-coalgebra K◻Q containing is the path coalgebra of a profinite bound quiver (Q,), and the category C-Comod...
Let be an abstract class (closed under isomorpic copies) of left -modules. In the first part of the paper some sufficient conditions under which is a precover class are given. The next section studies the -precovers which are -covers. In the final part the results obtained are applied to the hereditary torsion theories on the category on left -modules. Especially, several sufficient conditions for the existence of -torsionfree and -torsionfree -injective covers are presented.
Recently, Rim and Teply , using the notion of -exact modules, found a necessary condition for the existence of -torsionfree covers with respect to a given hereditary torsion theory for the category -mod of all unitary left -modules over an associative ring with identity. Some relations between -torsionfree and -exact covers have been investigated in . The purpose of this note is to show that if is Goldie’s torsion theory and is a precover class, then is a precover class whenever...
Currently displaying 1 –
5 of
5