Page 1

Displaying 1 – 15 of 15

Showing per page

Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat...

Modules.

Cockett, J. R. B., Koslowski, J., Seely, R. A. G., Wood, R. J. (2003)

Theory and Applications of Categories [electronic only]

Morita duality for Grothendieck categories.

José L. Gómez Pardo, Francisco de A. Guil Asensio (1992)

Publicacions Matemàtiques

We survey some recent results on the theory of Morita duality for Grothendieck categories, comparing two different versions of this concept, and giving applications to QF-3 and Qf-3' rings.

Multi-bimodels

Enrico M. Vitale (1999)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Currently displaying 1 – 15 of 15

Page 1