The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study a connection between left-right projective bimodules and stable equivalences of Morita type for finite-dimensional associative algebras over a field. Some properties of the category of all finite-dimensional left-right projective bimodules for self-injective algebras are also given.
Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.
Let K be a field and Γ a finite quiver without oriented cycles. Let Λ := K(Γ,ρ) be the quotient algebra of the path algebra KΓ by the ideal generated by ρ, and let 𝒟(Λ) be the dual extension of Λ. We prove that each Lie derivation of 𝒟(Λ) is of the standard form.
Currently displaying 1 –
3 of
3