Loading [MathJax]/extensions/MathZoom.js
Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat...
Let A be a finitely generated associative algebra over an algebraically closed field. We characterize the finite-dimensional A-modules whose orbit closures are local hypersurfaces. The result is reduced to an analogous characterization for orbit closures of quiver representations obtained in Section 3.
In the cases and , we describe the seeds obtained by sequences of mutations from an initial seed. In the case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.
Currently displaying 1 –
6 of
6