The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...
We give a complete description of finite-dimensional selfinjective algebras of Euclidean tilted type over an algebraically closed field whose all nonperiodic Auslander-Reiten components are almost regular. In particular, we describe the tame selfinjective finite-dimensional algebras whose all nonperiodic Auslander-Reiten components are almost regular and generalized standard.
We develop the representation theory of selfinjective algebras of strictly canonical type and prove that their Auslander-Reiten quivers admit quasi-tubes maximally saturated by simple and projective modules.
We classify all tame self/injective algebras having simply connected Galois coverings and the stable Auslander-Reiten quivers consisting of stable tubes. Moreover, the classification of nondomestic polynomial growth standard self/injective algebras is completed.
We develop the representation theory of selfinjective algebras which admit Galois coverings by the repetitive algebras of algebras whose derived category of bounded complexes of finite-dimensional modules is equivalent to the derived category of coherent sheaves on a weighted projective line with virtual genus greater than one.
Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...
We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.
The class of n-fundamental algebras is introduced. It is a subclass of string algebras. For n-fundamental algebras we study the problem of when the Auslander-Reiten quiver contains, at the beginning or at the end, a component which is not generalized standard.
We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.
Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if...
We classify (up to Morita equivalence) all symmetric special biserial algebras of Euclidean type, by algebras arising from Brauer graphs.
Currently displaying 1 –
14 of
14