Page 1

Displaying 1 – 9 of 9

Showing per page

Relative Auslander bijection in n -exangulated categories

Jian He, Jing He, Panyue Zhou (2023)

Czechoslovak Mathematical Journal

The aim of this article is to study the relative Auslander bijection in n -exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.

Relative Auslander-Reiten sequences for quasi-hereditary algebras

Karin Erdmann, José Antonio de la Peña, Corina Sáenz (2002)

Colloquium Mathematicae

Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).

Relative theory in subcategories

Soud Khalifa Mohamed (2009)

Colloquium Mathematicae

We generalize the relative (co)tilting theory of Auslander-Solberg in the category mod Λ of finitely generated left modules over an artin algebra Λ to certain subcategories of mod Λ. We then use the theory (relative (co)tilting theory in subcategories) to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

Representation-directed algebras form an open scheme

Stanislaw Kasjan (2002)

Colloquium Mathematicae

We apply van den Dries's test to the class of algebras (over algebraically closed fields) which are not representation-directed and prove that this class is axiomatizable by a positive quantifier-free formula. It follows that the representation-directed algebras form an open ℤ-scheme.

Representation-finite triangular algebras form an open scheme

Stanisław Kasjan (2003)

Open Mathematics

Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.

Representation-tame locally hereditary algebras

Zbigniew Leszczyński (2004)

Colloquium Mathematicae

Let A be a finite-dimensional algebra over an algebraically closed field. The algebra A is called locally hereditary if any local left ideal of A is projective. We give criteria, in terms of the Tits quadratic form, for a locally hereditary algebra to be of tame representation type. Moreover, the description of all representation-tame locally hereditary algebras is completed.

Roots of Nakayama and Auslander-Reiten translations

Helmut Lenzing, Andrzej Skowroński (2000)

Colloquium Mathematicae

We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.

Currently displaying 1 – 9 of 9

Page 1