Necklace rings and their radicals.
In this paper rings for which every -torsion quasi-injective module is weakly -divisible for a hereditary preradical are characterized in terms of the properties of the corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory these rings coincide with -rings investigated by J. Ahsan and E. Enochs in [1]. Our aim was to generalize some results concerning -rings obtained by J.S. Golan and S.R. L’opez-Permouth in [12]. A characterization of the -property in the...
In 1964, Bertram Yood posed the following problem: whether the intersection of all closed maximal regular left ideals of a topological ring coincides with the intersection of all closed maximal regular right ideals of this ring. It is proved that these two intersections coincide for advertive and simplicial topological rings and, using this result, it is shown that the topological left radical and the topological right radical for every advertive and simplicial topological algebra coincide.
The Uniformly strongly prime k-radical of a Γ-semiring is a special class which we study via its operator semiring.
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.