A Characterization Of Primal Noetherian Rings.
Page 1 Next
P.L. Manley (1988)
Revista colombiana de matematicas
Markus Schmidmeier (2002)
Czechoslovak Mathematical Journal
We investigate the category of finite length modules over the ring , where is a V-ring, i.e. a ring for which every simple module is injective, a subfield of its centre and an elementary -algebra. Each simple module gives rise to a quasiprogenerator . By a result of K. Fuller, induces a category equivalence from which we deduce that . As a consequence we can (1) construct for each elementary -algebra over a finite field a nonartinian noetherian ring such that , (2) find twisted...
Tsuda, Kentaro (2000)
International Journal of Mathematics and Mathematical Sciences
Yuxian Geng (2013)
Czechoslovak Mathematical Journal
Let be a left and right Noetherian ring and a semidualizing -bimodule. We introduce a transpose of an -module with respect to which unifies the Auslander transpose and Huang’s transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use to develop further the generalized Gorenstein dimension with respect to . Especially, we generalize the Auslander-Bridger formula to the generalized...
Michael Höppner (1983)
Manuscripta mathematica
A. Caruth (1993)
Colloquium Mathematicae
Guédénon, Thomas (2001)
Beiträge zur Algebra und Geometrie
Andrzej Tyc (2001)
Colloquium Mathematicae
Let H be a Hopf algebra over a field k such that every finite-dimensional (left) H-module is semisimple. We give a counterpart of the first fundamental theorem of the classical invariant theory for locally finite, finitely generated (commutative) H-module algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the k-algebra A = k[[X₁,...,Xₙ]] in such a way that the unique maximal ideal in A is invariant, then the algebra of invariants is a noetherian Cohen-Macaulay...
J.C. McConnell (1988)
Inventiones mathematicae
Bhat, V.K. (2008)
Beiträge zur Algebra und Geometrie
Lieven Le Bruyn, M. Van den Bergh (1996)
Mathematische Zeitschrift
Patrick. F. Smith, Dinh Van Huynh (1990)
Banach Center Publications
Kenneth A. Brown, Thierry Levasseur (1985)
Mathematische Zeitschrift
O. D. Artemovych (1999)
Commentationes Mathematicae Universitatis Carolinae
We characterize left Noetherian rings which have only trivial derivations.
Artemovych, O.D. (2002)
Mathematica Pannonica
Malliavin, Marie-Paule (1983/1984)
Portugaliae mathematica
Augustin Mouze (2001)
Studia Mathematica
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.
Fieldhouse, David J. (1984)
International Journal of Mathematics and Mathematical Sciences
Timothy Porter (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Pavel Příhoda (2010)
Rendiconti del Seminario Matematico della Università di Padova
Page 1 Next