Displaying 21 – 40 of 74

Showing per page

Left EM rings

Jongwook Baeck (2024)

Czechoslovak Mathematical Journal

Let R [ x ] be the polynomial ring over a ring R with unity. A polynomial f ( x ) R [ x ] is referred to as a left annihilating content polynomial (left ACP) if there exist an element r R and a polynomial g ( x ) R [ x ] such that f ( x ) = r g ( x ) and g ( x ) is not a right zero-divisor polynomial in R [ x ] . A ring R is referred to as left EM if each polynomial f ( x ) R [ x ] is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover,...

Local cohomology in classical rings.

José Luis Bueso Montero, Pascual Jara Martínez (1992)

Publicacions Matemàtiques

The aim of this paper is to establish the close connection between prime ideals and torsion theories in a non necessarily commutative noetherian ring. We introduce a new definition of support of a module and characterize some kinds of torsion theories in terms of prime ideals. Using the machinery introduced before, we prove a version of the Mayer-Vietoris Theorem for local cohomology and establish a relationship between the classical dimension and the vanishing of the groups of local cohomology...

Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings

Vijay Kumar Bhat (2013)

Czechoslovak Mathematical Journal

Let R be a ring. We recall that R is called a near pseudo-valuation ring if every minimal prime ideal of R is strongly prime. Let now σ be an automorphism of R and δ a σ -derivation of R . Then R is said to be an almost δ -divided ring if every minimal prime ideal of R is δ -divided. Let R be a Noetherian ring which is also an algebra over ( is the field of rational numbers). Let σ be an automorphism of R such that R is a σ ( * ) -ring and δ a σ -derivation of R such that σ ( δ ( a ) ) = δ ( σ ( a ) ) for all a R . Further, if for any...

On S -Noetherian rings

Zhongkui Liu (2007)

Archivum Mathematicum

Let R be a commutative ring and S R a given multiplicative set. Let ( M , ) be a strictly ordered monoid satisfying the condition that 0 m for every m M . Then it is shown, under some additional conditions, that the generalized power series ring [ [ R M , ] ] is S -Noetherian if and only if R is S -Noetherian and M is finitely generated.

Currently displaying 21 – 40 of 74