On a class of free Galois extensions.
Let be an abelian group, a commutative ring of prime characteristic with identity and a commutative twisted group ring of over . Suppose is a fixed prime, and are the -components of and of the unit group of , respectively. Let be the multiplicative group of and let be the -th Ulm-Kaplansky invariant of where is any ordinal. In the paper the invariants , , are calculated, provided . Further, a commutative ring with identity of prime characteristic is said...
Let G be a noncyclic abelian p-group and K be an infinite field of finite characteristic p. For every 2-cocycle λ ∈ Z²(G,K*) such that the twisted group algebra is of infinite representation type, we find natural numbers d for which G has infinitely many faithful absolutely indecomposable λ-representations over K of dimension d.
Let G be a finite group, F a field of characteristic p with p||G|, and the twisted group algebra of the group G and the field F with a 2-cocycle λ ∈ Z²(G,F*). We give necessary and sufficient conditions for to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.
Let Λ = (S/R,α) be a local weak crossed product order in the crossed product algebra A = (L/K,α) with integral cocycle, and the inertial group of α, for S* the group of units of S. We give a condition for the first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L/K.
Our aim is to determine necessary and sufficient conditions for a finite nilpotent group to have a faithful irreducible projective representation over a field of characteristic p ≥ 0.
Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module...
On donne une condition nécessaire et suffisante pour l’existence de modules de dimension finie sur l’algèbre de Cherednik rationnelle associée à un système de racines.