Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Strongly groupoid graded rings and cohomology

Patrik Lundström (2006)

Colloquium Mathematicae

We interpret the collection of invertible bimodules as a groupoid and call it the Picard groupoid. We use this groupoid to generalize the classical construction of crossed products to what we call groupoid crossed products, and show that these coincide with the class of strongly groupoid graded rings. We then use groupoid crossed products to obtain a generalization from the group graded situation to the groupoid graded case of the bijection from a second cohomology group, defined by the grading...

The basic construction from the conditional expectation on the quantum double of a finite group

Qiaoling Xin, Lining Jiang, Zhenhua Ma (2015)

Czechoslovak Mathematical Journal

Let G be a finite group and H a subgroup. Denote by D ( G ; H ) (or D ( G ) ) the crossed product of C ( G ) and H (or G ) with respect to the adjoint action of the latter on the former. Consider the algebra D ( G ) , e generated by D ( G ) and e , where we regard E as an idempotent operator e on D ( G ) for a certain conditional expectation E of D ( G ) onto D ( G ; H ) . Let us call D ( G ) , e the basic construction from the conditional expectation E : D ( G ) D ( G ; H ) . The paper constructs a crossed product algebra C ( G / H × G ) G , and proves that there is an algebra isomorphism between D ( G ) , e and C ( G / H × G ) G .

Twisted group rings of strongly unbounded representation type

Leonid F. Barannyk, Dariusz Klein (2004)

Colloquium Mathematicae

Let S be a commutative local ring of characteristic p, which is not a field, S* the multiplicative group of S, W a subgroup of S*, G a finite p-group, and S λ G a twisted group ring of the group G and of the ring S with a 2-cocycle λ ∈ Z²(G,S*). Denote by I n d m ( S λ G ) the set of isomorphism classes of indecomposable S λ G -modules of S-rank m. We exhibit rings S λ G for which there exists a function f λ : such that f λ ( n ) n and I n d f λ ( n ) ( S λ G ) is an infinite set for every natural n > 1. In special cases f λ ( ) contains every natural number m >...

Currently displaying 41 – 60 of 60

Previous Page 3