On the multiplicative subgroup of a group ring
Let be a finite nonabelian group, its associated integral group ring, and its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.
This paper is motivated by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, of a -adic analytic group . For without any -torsion element we prove that is an Auslander regular ring. This result enables us to give a good definition of the notion of a pseudo-null -module. This is classical when for some integer , but was previously unknown in the non-commutative case. Then the category of -modules...
In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory of finite...
Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module...