The search session has expired. Please query the service again.
If is a hereditary torsion theory on and is the localization functor, then we show that every -derivation has a unique extension to an -derivation when is a differential torsion theory on . Dually, it is shown that if is cohereditary and is the colocalization functor, then every -derivation can be lifted uniquely to an -derivation .
This is a summary of some of the main results in the monograph Faithfully Ordered Rings (Mem. Amer. Math. Soc. 2015), presented by the first author at the ALANT conference, Będlewo, Poland, June 8-13, 2014. The notions involved and the results are stated in detail, the techniques employed briefly outlined, but proofs are omitted. We focus on those aspects of the cited monograph concerning (diagonal) quadratic forms over preordered rings.
Let K be a field of characteristic p > 0, K* the multiplicative group of K and a finite group, where is a p-group and B is a p’-group. Denote by a twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for G to be of OTP projective K-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,K*) such that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and a simple...
Let S be a commutative complete discrete valuation domain of positive characteristic p, S* the unit group of S, Ω a subgroup of S* and a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). For Ω satisfying a specific condition, we give necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,Ω) such that every indecomposable...
Let G be a finite group, K a field of characteristic p > 0, and the twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.
First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.
Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
This is an extended version of a talk given by the author at the conference “Algebra and Topology in Interaction” on the occasion of the 70th Anniversary of D.B. Fuchs at UC Davis in September 2009. It is a brief survey of an area originated around 1995 by I. Gelfand and the speaker.
We study associative, basic n × n𝔸-full matrix algebras over a field, whose multiplications are determined by structure systems 𝔸, that is, n-tuples of n × n matrices with certain properties.
Currently displaying 1 –
20 of
22