The search session has expired. Please query the service again.
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A → Mₙ(ℂ) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A' must be the convolution Cesàro limit of the linear functional φ = tr ∘ π. We then discuss some consequences of this result, notably to inner linearity questions.
The incidence coalgebras of interval finite posets I and their comodules are studied by means of the reduced Euler integral quadratic form , where K is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category of finite-dimensional left -modules is equivalent to the tameness of the category of finitely copresented left -modules. Hence, the tame-wild dichotomy for the coalgebras is deduced. Moreover, we prove that for an interval finite ̃ *ₘ-free...
The half-liberated orthogonal group appears as intermediate quantum group between the orthogonal group , and its free version . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between and , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...
Currently displaying 1 –
5 of
5