Displaying 181 – 200 of 382

Showing per page

On commutative twisted group rings

Todor Zh. Mollov, Nako A. Nachev (2005)

Czechoslovak Mathematical Journal

Let G be an abelian group, R a commutative ring of prime characteristic p with identity and R t G a commutative twisted group ring of G over R . Suppose p is a fixed prime, G p and S ( R t G ) are the p -components of G and of the unit group U ( R t G ) of R t G , respectively. Let R * be the multiplicative group of R and let f α ( S ) be the α -th Ulm-Kaplansky invariant of S ( R t G ) where α is any ordinal. In the paper the invariants f n ( S ) , n { 0 } , are calculated, provided G p = 1 . Further, a commutative ring R with identity of prime characteristic p is said...

On E k -rings

Alessandra Cherubini, Ada Varisco (1988)

Czechoslovak Mathematical Journal

On feebly nil-clean rings

Marjan Sheibani Abdolyousefi, Neda Pouyan (2024)

Czechoslovak Mathematical Journal

A ring R is feebly nil-clean if for any a R there exist two orthogonal idempotents e , f R and a nilpotent w R such that a = e - f + w . Let R be a 2-primal feebly nil-clean ring. We prove that every matrix ring over R is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.

On free subgroups of units in quaternion algebras

Jan Krempa (2001)

Colloquium Mathematicae

It is well known that for the ring H(ℤ) of integral quaternions the unit group U(H(ℤ) is finite. On the other hand, for the rational quaternion algebra H(ℚ), its unit group is infinite and even contains a nontrivial free subgroup. In this note (see Theorem 1.5 and Corollary 2.6) we find all intermediate rings ℤ ⊂ A ⊆ ℚ such that the group of units U(H(A)) of quaternions over A contains a nontrivial free subgroup. In each case we indicate such a subgroup explicitly. We do our best to keep the arguments...

On free subgroups of units in quaternion algebras II

Jan Krempa (2003)

Colloquium Mathematicae

Let A ⊆ ℚ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra H(A) to units of certain rings of generalized quaternions H(A,a,b) = ((-a,-b)/A), where a,b ∈ A. Next we show that there is an algebra embedding of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.

On groups of similitudes in associative rings

Evgenii L. Bashkirov (2008)

Commentationes Mathematicae Universitatis Carolinae

Let R be an associative ring with 1 and R × the multiplicative group of invertible elements of R . In the paper, subgroups of R × which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.

Currently displaying 181 – 200 of 382