Displaying 41 – 60 of 382

Showing per page

Basic subgroups in abelian group rings

Peter Vassilev Danchev (2002)

Czechoslovak Mathematical Journal

Suppose R is a commutative ring with identity of prime characteristic p and G is an arbitrary abelian p -group. In the present paper, a basic subgroup and a lower basic subgroup of the p -component U p ( R G ) and of the factor-group U p ( R G ) / G of the unit group U ( R G ) in the modular group algebra R G are established, in the case when R is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed p -component S ( R G ) and of the quotient group S ( R G ) / G p are given when R is perfect and G is arbitrary whose G / G p is p -divisible....

Basic subgroups in commutative modular group rings

Peter Vassilev Danchev (2004)

Mathematica Bohemica

Let S ( R G ) be a normed Sylow p -subgroup in a group ring R G of an abelian group G with p -component G p and a p -basic subgroup B over a commutative unitary ring R with prime characteristic p . The first central result is that 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) is basic in S ( R G ) and B [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] is p -basic in V ( R G ) , and [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] G p / G p is basic in S ( R G ) / G p and [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] G / G is p -basic in V ( R G ) / G , provided in both cases G / G p is p -divisible and R is such that its maximal perfect subring R p i has no nilpotents whenever i is natural. The second major result is that B ( 1 + I ( R G ; B p ) ) is p -basic in V ( R G ) and ( 1 + I ( R G ; B p ) ) G / G is p -basic in V ( R G ) / G ,...

Basic subgroups in modular abelian group algebras

Peter Vassilev Danchev (2007)

Czechoslovak Mathematical Journal

Suppose F is a perfect field of c h a r F = p 0 and G is an arbitrary abelian multiplicative group with a p -basic subgroup B and p -component G p . Let F G be the group algebra with normed group of all units V ( F G ) and its Sylow p -subgroup S ( F G ) , and let I p ( F G ; B ) be the nilradical of the relative augmentation ideal I ( F G ; B ) of F G with respect to B . The main results that motivate this article are that 1 + I p ( F G ; B ) is basic in S ( F G ) , and B ( 1 + I p ( F G ; B ) ) is p -basic in V ( F G ) provided G is p -mixed. These achievements extend in some way a result of N. Nachev (1996) in Houston...

Centers in domains with quadratic growth

Agata Smoktunowicz (2005)

Open Mathematics

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.

Central Armendariz rings.

Agayev, Nazim, Güngöroğlu, Gonca, Harmanci, Abdullah, Halicioğlu, S. (2011)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Centralizers on prime and semiprime rings

Joso Vukman (1997)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R . Suppose that [ S ( x ) , T ( x ) ] S ( x ) + S ( x ) [ S ( x ) , T ( x ) ] = 0 is fulfilled for all x R . If S 0 ( T ...

Certain additive decompositions in a noncommutative ring

Huanyin Chen, Marjan Sheibani, Rahman Bahmani (2022)

Czechoslovak Mathematical Journal

We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a 2 × 2 matrix A over a projective-free ring R is strongly J -clean if and only if A J ( M 2 ( R ) ) , or I 2 - A J ( M 2 ( R ) ) , or A is similar to 0 λ 1 μ , where λ J ( R ) , μ 1 + J ( R ) , and the equation x 2 - x μ - λ = 0 has a root in J ( R ) and a root in 1 + J ( R ) . We further prove that f ( x ) R [ [ x ] ] is strongly J -clean if f ( 0 ) R be optimally J -clean.

Certain decompositions of matrices over Abelian rings

Nahid Ashrafi, Marjan Sheibani, Huanyin Chen (2017)

Czechoslovak Mathematical Journal

A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n . We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n ( J ( R ) ) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R / J ( R ) is 3 , B or 3 B where B is a Boolean ring, and that M n ( R ) is weakly nil clean if and only if M n ( R ) is nil clean for all n 2 .

Currently displaying 41 – 60 of 382