Previous Page 4

Displaying 61 – 67 of 67

Showing per page

On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma, Gaurav Mittal (2022)

Mathematica Bohemica

We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

On ( σ , τ ) -derivations in prime rings

Mohammad Ashraf, Nadeem-ur-Rehman (2002)

Archivum Mathematicum

Let R be a 2-torsion free prime ring and let σ , τ be automorphisms of R . For any x , y R , set [ x , y ] σ , τ = x σ ( y ) - τ ( y ) x . Suppose that d is a ( σ , τ ) -derivation defined on R . In the present paper it is shown that ( i ) if R satisfies [ d ( x ) , x ] σ , τ = 0 , then either d = 0 or R is commutative ( i i ) if I is a nonzero ideal of R such that [ d ( x ) , d ( y ) ] = 0 , for all x , y I , and d commutes with both σ and τ , then either d = 0 or R is commutative. ( i i i ) if I is a nonzero ideal of R such that d ( x y ) = d ( y x ) , for all x , y I , and d commutes with τ , then R is commutative. Finally a related result has been obtain for ( σ , τ ) -derivation....

Currently displaying 61 – 67 of 67

Previous Page 4