On Bernstein-Gelfand-Gelfand equivalence and tilting theory
All commutative semigroups are described such that the Jacobson radical is homogeneous in each ring graded by .
For any non-torsion group with identity , we construct a strongly -graded ring such that the Jacobson radical is locally nilpotent, but is not locally nilpotent. This answers a question posed by Puczyłowski.
Let be a field and be the standard bigraded polynomial ring over . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” -modules with respect to . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to are considered.