Page 1

Displaying 1 – 12 of 12

Showing per page

Categorical methods in graded ring theory.

Angel del Río (1992)

Publicacions Matemàtiques

Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.

Certain partitions on a set and their applications to different classes of graded algebras

Antonio J. Calderón Martín, Boubacar Dieme (2021)

Communications in Mathematics

Let ( 𝔄 , ϵ u ) and ( 𝔅 , ϵ b ) be two pointed sets. Given a family of three maps = { f 1 : 𝔄 𝔄 ; f 2 : 𝔄 × 𝔄 𝔄 ; f 3 : 𝔄 × 𝔄 𝔅 } , this family provides an adequate decomposition of 𝔄 { ϵ u } as the orthogonal disjoint union of well-described -invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak H * -algebras.

Commutative graded- S -coherent rings

Anass Assarrar, Najib Mahdou, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

Recently, motivated by Anderson, Dumitrescu’s S -finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S -coherent rings, which is the S -version of coherent rings. Let R = α G R α be a commutative ring with unity graded by an arbitrary commutative monoid G , and S a multiplicatively closed subset of nonzero homogeneous elements of R . We define R to be graded- S -coherent ring if every finitely generated homogeneous ideal of R is S -finitely presented. The purpose of this paper is to give the graded...

Componentwise injective models of functors to DGAs

Marek Golasiński (1997)

Colloquium Mathematicae

The aim of this paper is to present a starting point for proving existence of injective minimal models (cf. [8]) for some systems of complete differential graded algebras.

Currently displaying 1 – 12 of 12

Page 1