O automorfismech definovaných na okruhu endomorfismů homogenního totálně rozložitelného modulu
In 1964, Bertram Yood posed the following problem: whether the intersection of all closed maximal regular left ideals of a topological ring coincides with the intersection of all closed maximal regular right ideals of this ring. It is proved that these two intersections coincide for advertive and simplicial topological rings and, using this result, it is shown that the topological left radical and the topological right radical for every advertive and simplicial topological algebra coincide.
Let be a prime ring, with no non-zero nil right ideal, a non-zero drivation of , a non-zero two-sided ideal of . If, for any , , there exists such that , then is commutative. As a consequence we extend the result to Lie ideals.