Previous Page 3

Displaying 41 – 55 of 55

Showing per page

Structures naturelles des demi-groupes et des anneaux réguliers ou involutés

Jean Calmes (1994)

Mathématiques et Sciences Humaines

Certaines relations binaires sont définies sur les demi-groupes et les demi-groupes à involution. On examine comment elles peuvent en ordonner les éléments: notamment les idempotents, les éléments réguliers au sens de von Neumann, ceux qui possédent un inverse ponctuel ou de Moore-Penrose ; et en fonction aussi de conditions sur l'involution. Ces relations peuvent alors coïncider avec les ordres naturels des idempotents et des demi-groupes inverses, avec les ordres de Drazin et de Hartwig : elles...

Sur certaines algèbres de Lie de dérivations

Yves Félix, Stephen Halperin, Jean-Claude Thomas (1982)

Annales de l'institut Fourier

Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.

Systèmes dynamiques contraints : l'approche homologique

Michel Dubois-Violette (1987)

Annales de l'institut Fourier

On décrit une approche homologique des systèmes dynamiques contraints. Cette approche, directement inspirée des travaux de D. McMullan et de M. Henneaux concernant le formalisme de Batalin, Fradkin et Vilkovisky, contient une interprétation des fantômes et de leurs conjugués. Dans le cadre des systèmes dans l’espace des phases, la construction se fait en deux étapes. La première étape consiste à construire une algèbre différentielle graduée dont la cohomologie en degré zéro est l’espace des observables...

Currently displaying 41 – 55 of 55

Previous Page 3