On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
In this paper we will examine the relationship between modularity in the lattices of subalgebras of A and A(+), for A an associative algebra over an algebraically closed field. To this aim we will construct an ideal which measures the modularity of an algebra (not necessarily associative) in paragraph 1, examine modular associative algebras in paragraph 2, and prove in paragraph 3 that the ideal constructed in paragraph 1 coincides for A and A(+). We will also examine some properties of the ideal...
We begin to study the structure of Leibniz algebras having maximal cyclic subalgebras.
This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra includes a finite dimensional ideal such that the factor-algebra is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.