Displaying 81 – 100 of 321

Showing per page

Holomorphic automorphisms and collective compactness in J*-algebras of operator

José Isidro (2007)

Open Mathematics

Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball B 𝔄 in a J*-algebra 𝔄 of operators. Let 𝔉 be the family of all collectively compact subsets W contained in B 𝔄 . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family 𝔉 is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when 𝔄 is a Cartan factor.

Holomorphic retractions and boundary Berezin transforms

Jonathan Arazy, Miroslav Engliš, Wilhelm Kaup (2009)

Annales de l’institut Fourier

In an earlier paper, the first two authors have shown that the convolution of a function f continuous on the closure of a Cartan domain and a K -invariant finite measure μ on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face F depends only on the restriction of f to F and is equal to the convolution, in  F , of the latter restriction with some measure μ F on F uniquely determined by  μ . In this article, we give an explicit formula for μ F in terms of  F ,...

Homogeneous self dual cones versus Jordan algebras. The theory revisited

Jean Bellissard, B. Iochum (1978)

Annales de l'institut Fourier

Let 𝔐 be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) a b a b ,    a , b 𝔐 (ii) a 2 = a 2 (iii) a 2 a 2 + b 2 . 𝔐 is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set 𝔐 + of squares in 𝔐 is a closed convex cone. ( 𝔐 , 𝔐 + , 1 ) is a complete ordered vector space with 1 as a order unit. In addition, we assume 𝔐 to be monotone complete (i.e. 𝔐 coincides with the bidual 𝔐 * * ), and that there exists a finite normal faithful trace φ on 𝔐 .Then the completion { 𝔐 + } φ of 𝔐 + with respect to the Hilbert structure...

Inference for random effects in prime basis factorials using commutative Jordan algebras

Vera M. Jesus, Paulo Canas Rodrigues, João Tiago Mexia (2007)

Discussiones Mathematicae Probability and Statistics

Commutative Jordan algebras are used to drive an highly tractable framework for balanced factorial designs with a prime number p of levels for their factors. Both fixed effects and random effects models are treated. Sufficient complete statistics are obtained and used to derive UMVUE for the relevant parameters. Confidence regions are obtained and it is shown how to use duality for hypothesis testing.

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...

Jordan pairs of quadratic forms with values in invertible modules.

Hisatoshi Ikai (2007)

Collectanea Mathematica

Jordan pairs of quadratic forms are generalized so that they have forms with values in invertible modules. The role of such pairs turns out to be natural in describing 'big cells', a kind of open charts around unit sections, of Clifford and orthogonal groups as group schemes. Group germ structures on big cells are particularly interested in and related also to Cayley-Lipschitz transforms.

Currently displaying 81 – 100 of 321