Page 1

Displaying 1 – 6 of 6

Showing per page

New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization

Behrouz Kheirfam, Nezam Mahdavi-Amiri (2013)

Kybernetika

A full Nesterov-Todd step infeasible interior-point algorithm is proposed for solving linear programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a new approach, we also provide a search direction and show that the iteration bound coincides with the best known bound for infeasible interior-point methods.

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Mohammed Chadli (1998)

Annales de l'institut Fourier

Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy H 2 ( Ξ ) d’un espace symétrique de type Cayley = G / H . Nous montrons que le noyau de Cauchy-Szegö de H 2 ( Ξ ) s’exprime comme somme d’une série faisant intervenir la fonction c de Harish-Chandra de l’espace symétrique riemannien D = G / K , la fonction c de l’espace symétrique c -dual 𝒩 de et les fonctions sphériques de l’espace symétrique ordonné 𝒩 . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...

Currently displaying 1 – 6 of 6

Page 1