Der Wedderburnsche Hauptsatz für alternative Tripelsysteme und Paare.
We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra...
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.
Let 𝔄₃ denote the variety of alternative commutative (Jordan) algebras defined by the identity x³ = 0, and let 𝔖₂ be the subvariety of the variety 𝔄₃ of solvable algebras of solviability index 2. We present an infinite independent system of identities in the variety 𝔄₃ ∩ 𝔖₂𝔖₂. Therefore we infer that 𝔄₃ ∩ 𝔖₂𝔖₂ contains a continuum of infinite based subvarieties and that there exist algebras with an unsolvable words problem in 𝔄₃ ∩ 𝔖₂𝔖₂. It is worth mentioning that these results were...
We prove a series of "going-up" theorems contrasting the structure of semiprime algebras and their subalgebras of invariants under the actions of Lie color algebras.
We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.