Displaying 161 – 180 of 3017

Showing per page

A representation theorem for certain Boolean lattices.

José Ríos Montes (1988)

Publicacions Matemàtiques

Let R be an associative ring with 1 and R-tors the somplete Brouwerian lattice of all hereditary torsion theories on the category of left R-modules. A well known result asserts that R is a left semiartinian ring iff R-tors is a complete atomic Boolean lattice. In this note we prove that if L is a complete atomic Boolean lattice then there exists a left semiartinian ring R such that L is lattice-isomorphic to R-tors.

A sheaf of Boehmians

Jonathan Beardsley, Piotr Mikusiński (2013)

Annales Polonici Mathematici

We show that Boehmians defined over open sets of ℝⁿ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.

A short proof of Eilenberg and Moore’s theorem

Maria Nogin (2007)

Open Mathematics

In this paper we give a short and simple proof the following theorem of S. Eilenberg and J.C. Moore: the only injective object in the category of groups is the trivial group.

Currently displaying 161 – 180 of 3017