Factorization and non-algebraic categories
A subsheaf of the sheaf of germs functions over an open subset of is called a sheaf of sub function. Comparing with the investigations of sheaves of ideals of , we study the finite presentability of certain sheaves of sub -rings. Especially we treat the sheaf defined by the distribution of Mather’s -classes of a mapping.
Nous nous intéressons à la question de l’existence de familles de Hurwitz au-dessus d’un espace de modules de revêtements de la droite. On sait que de telles familles existent dans le cas où les revêtements n’ont pas d’automorphismes. Dans le cas général, il y a une obstruction cohomologique, de nature non-abélienne. Nous donnons une double description de cette obstruction : la première en termes de gerbe, l’outil le mieux adapté à des situations cohomologiques non-abéliennes et la deuxièmes en...
We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset....
We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset....