Previous Page 5

Displaying 81 – 93 of 93

Showing per page

The structure of the tensor product of 𝔽 2 [ - ] with a finite functor between 𝔽 2 -vector spaces

Geoffrey M. L. Powell (2000)

Annales de l'institut Fourier

The paper studies the structure of functors I F in the category of functors from finite dimensional 𝔽 2 -vector spaces to 𝔽 2 -vector spaces, where F is a finite functor and I is the injective functor V 𝔽 2 V * . A detection theorem is proved for sub-functors of such functors, which is the basis of the proof that the functors I F are artinian of type one.

Troesch complexes and extensions of strict polynomial functors

Antoine Touzé (2012)

Annales scientifiques de l'École Normale Supérieure

We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical Ext -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for  G L n for  n big enough (and we give a conjecture for smaller values of  n ). We also study the “twisting spectral sequence” E s , t ( F , G , r ) converging to the extension groups Ext 𝒫 𝕜 * ( F ( r ) , G ( r ) ) between the...

Uniformly Movable Categories and Uniform Movability of Topological Spaces

P. S. Gevorgyan, I. Pop (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

A categorical generalization of the notion of movability from inverse systems and shape theory was given by the first author who defined the notion of movable category and used it to interpret the movability of topological spaces. In this paper the authors define the notion of uniformly movable category and prove that a topological space is uniformly movable in the sense of shape theory if and only if its comma category in the homotopy category HTop over the subcategory HPol of polyhedra is uniformly...

Currently displaying 81 – 93 of 93

Previous Page 5