Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.
Let and be abelian categories with enough projective and injective objects, and a left exact additive functor. Then one has a comma category . It is shown that if is -exact, then is a (hereditary) cotorsion pair in and ) is a (hereditary) cotorsion pair in if and only if is a (hereditary) cotorsion pair in and and are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories and can induce special preenveloping classes...