A 2-categorical approach to change of base and geometric morphisms. II.
Page 1 Next
Carboni, A., Kelly, G.M., Verity, D., Wood, R.J. (1998)
Theory and Applications of Categories [electronic only]
Khovanov, Mikhail, Mazorchuk, Volodymyr, Stroppel, Catharina (2009)
Theory and Applications of Categories [electronic only]
Paul Cherenack (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Börger, Reinhard (2010)
Theory and Applications of Categories [electronic only]
Guillaume C. L. Brümmer, Eraldo Giuli (1992)
Commentationes Mathematicae Universitatis Carolinae
We introduce the concept of firm classes of morphisms as basis for the axiomatic study of completions of objects in arbitrary categories. Results on objects injective with respect to given morphism classes are included. In a finitely well-complete category, firm classes are precisely the coessential first factors of morphism factorization structures.
Tholen, Walter (1999)
Homology, Homotopy and Applications
Peter Burmeister, Bolesław Wojdyło (1989)
Colloquium Mathematicae
Horst Herrlich (1971)
Manuscripta mathematica
C. Centazzo, J. Rosický, E. M. Vitale (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
B. Johnson, R. McCarthy (2003)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
B. Johnson, R. McCarthy (2003)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Thorsten Wißmann, Stefan Milius, Shin-ya Katsumata, Jérémy Dubut (2019)
Commentationes Mathematicae Universitatis Carolinae
Coalgebras for an endofunctor provide a category theoretic framework for modeling a wide range of state-based systems of various types. We provide an iterative construction of the reachable part of a given pointed coalgebra that is inspired by and resembles the standard breadth-first search procedure to compute the reachable part of a graph. We also study coalgebras in Kleisli categories: for a functor extending a functor on the base category, we show that the reachable part of a given pointed coalgebra...
Fric, R., Kent, Darrell C. (1981)
International Journal of Mathematics and Mathematical Sciences
Vítězslav Veselý (1979)
Archivum Mathematicum
Eduardo J. Dubuc, Ross Street (2006)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
G. Szeto (1976/1977)
Semigroup forum
Thomas S. Shores (1975)
Mathematische Annalen
Fajstrup, L., Rosický, J. (2008)
Theory and Applications of Categories [electronic only]
Jiří Adámek, Václav Koubek, Jiří Velebil (2000)
Commentationes Mathematicae Universitatis Carolinae
A duality between -ary varieties and -ary algebraic theories is proved as a direct generalization of the finitary case studied by the first author, F.W. Lawvere and J. Rosick’y. We also prove that for every uncountable cardinal , whenever -small products commute with -colimits in , then must be a -filtered category. We nevertheless introduce the concept of -sifted colimits so that morphisms between -ary varieties (defined to be -ary, regular right adjoints) are precisely the functors...
Centazzo, C., Vitale, E.M. (2002)
Theory and Applications of Categories [electronic only]
Page 1 Next