Displaying 41 – 60 of 103

Showing per page

On hereditary and product-stable quotient maps

Friedhelm Schwarz, Sibylle Weck-Schwarz (1992)

Commentationes Mathematicae Universitatis Carolinae

It is shown that the quotient maps of a monotopological construct A which are preserved by pullbacks along embeddings, projections, or arbitrary morphisms, can be characterized by being quotient maps in appropriate extensions of A.

On inverse categories with split idempotents

Emil Schwab, Emil Daniel Schwab (2015)

Archivum Mathematicum

We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.

On monadic quantale algebras: basic properties and representation theorems

Sergey A. Solovyov (2010)

Discussiones Mathematicae - General Algebra and Applications

Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.

Currently displaying 41 – 60 of 103