Displaying 301 – 320 of 705

Showing per page

Galois H-objects with a normal basis in closed categories. A cohomological interpretation.

José N. Alonso Alvarez, José Manuel Fernández Vilaboa (1993)

Publicacions Matemàtiques

In this paper, for a cocommutative Hopf algebra H in a symmetric closed category C with basic object K, we get an isomorphism between the group of isomorphism classes of Galois H-objects with a normal basis and the second cohomology group H2(H,K) of H with coefficients in K. Using this result, we obtain a direct sum decomposition for the Brauer group of H-module Azumaya monoids with inner action:BMinn(C,H) ≅ B(C) ⊕ H2(H,K)In particular, if C is the symmetric closed category of C-modules with K a...

Gaps and dualities in Heyting categories

Jaroslav Nešetřil, Aleš Pultr, Claude Tardif (2007)

Commentationes Mathematicae Universitatis Carolinae

We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones.

Heisenberg algebra and a graphical calculus

Mikhail Khovanov (2014)

Fundamenta Mathematicae

A new calculus of planar diagrams involving diagrammatics for biadjoint functors and degenerate affine Hecke algebras is introduced. The calculus leads to an additive monoidal category whose Grothendieck ring contains an integral form of the Heisenberg algebra in infinitely many variables. We construct bases of the vector spaces of morphisms between products of generating objects in this category.

Homologie et modèle minimal des algèbres de Gerstenhaber

Grégory Ginot (2004)

Annales mathématiques Blaise Pascal

On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des 𝒢 -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade 𝒢 des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des 𝒢 -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin...

Currently displaying 301 – 320 of 705