Relative injectivity as cocompleteness for a class of distributors.
Clementino, Manuel Maria, Hofmann, Dirk (2008)
Theory and Applications of Categories [electronic only]
Vidal Martín, C. (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Kosta Došen, Zoran Petrić (2007)
Publications de l'Institut Mathématique
Reinhard Börger, Walter Tholen (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
René Guitart (1974)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Penon, Jacques (2009)
Theory and Applications of Categories [electronic only]
Shu Hao Sun, R. F. C. Walters (1994)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Hansen, Søren Kold (2001)
Algebraic & Geometric Topology
Métayer, François (2003)
Theory and Applications of Categories [electronic only]
Andrea Corradini, Fabio Gadducci (1999)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Andrea Corradini, Fabio Gadducci (2010)
RAIRO - Theoretical Informatics and Applications
We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2-theories. We show that this presentation is equivalent to the well-accepted operational definition proposed by Barendregt et al. – but for the case of circular redexes , for which we propose (and justify formally) a different treatment. The categorical framework allows us to model in a concise way also automatic garbage collection and rules for sharing/unsharing and...
Davydov, A., Street, R. (2002)
Georgian Mathematical Journal
Garzón, Antonio, Inassaridze, Hvedri (2001)
Homology, Homotopy and Applications
V.S. Krishnan (1984)
Semigroup forum
Yuanyuan Chen, Xiaoyan Zhou (2014)
Colloquium Mathematicae
As generalizations of separable and Frobenius algebras, separable and Frobenius monoidal Hom-algebras are introduced. They are all related to the Hom-Frobenius-separability equation (HFS-equation). We characterize these two Hom-algebraic structures by the same central element and different normalizing conditions, and the structure of these two types of monoidal Hom-algebras is studied. The Nakayama automorphisms of Frobenius monoidal Hom-algebras are considered.
Shuangjian Guo, Xiaohui Zhang (2016)
Colloquium Mathematicae
Let be the category of Doi Hom-Hopf modules, be the category of A-Hom-modules, and F be the forgetful functor from to . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.
Gigel Militaru (2010)
Open Mathematics
We call a monoidal category C a Serre category if for any C, D ∈ C such that C ⊗ D is semisimple, C and D are semisimple objects in C. Let H be an involutory Hopf algebra, M, N two H-(co)modules such that M ⊗ N is (co)semisimple as a H-(co)module. If N (resp. M) is a finitely generated projective k-module with invertible Hattory-Stallings rank in k then M (resp. N) is (co)semisimple as a H-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or Yetter-Drinfel’d...
C. Lair (1983)
Diagrammes
Armin Frei, Heinrich Kleisli (1978/1979)
Mathematische Zeitschrift
Renato Betti (1984)
Cahiers de Topologie et Géométrie Différentielle Catégoriques