Matrix factorizations and singularity categories for stacks
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.