This note compares τ-tilting modules and maximal rigid objects in the context of 2-Calabi-Yau triangulated categories. Let be a 2-Calabi-Yau triangulated category with suspension functor S. Let R be a maximal rigid object in and let Γ be the endomorphism algebra of R. Let F be the functor . We prove that any τ-tilting module over Γ lifts uniquely to a maximal rigid object in via F, and in turn, that projection from to mod Γ sends the maximal rigid objects which have no direct summands from add...