Chain Equivalences and Schanuel's Lemma.
For any etale topological groupoid (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space .
Pour un anneau local l’homologie du groupe discret a un comportement tout à fait analogue à l’homologie de l’algèbre de Lie lorsque est une algèbre associative sur un corps de caractéristique zéro. L’objet de cet article est de faire une synthèse (sans démonstration) des résultats connus sur ces groupes d’homologie en exhibant leurs liens avec la -théorie algébrique, l’homologie cyclique et la cohomologie motivique. On y pose un certain nombre de questions et on propose une définition pour...