Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Algebraic properties of decorated splitting obstruction groups

A. Cavicchioli, Y. V. Muranov, D. Repovš (2001)

Bollettino dell'Unione Matematica Italiana

In questo articolo si riassumono le definizioni e le principali proprietà dei gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove relazioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra differenti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenenti questi gruppi con decorazione, e si studiano la loro connessione con le successioni spettrali in K -teoria per certe estensioni quadratiche di antistrutture. Infine, si introduce...

Dualization in algebraic K-theory and the invariant e¹ of quadratic forms over schemes

Marek Szyjewski (2011)

Fundamenta Mathematicae

In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰). Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are: ...

Structure of unitary groups over finite group rings and its application

Jizhu Nan, Yufang Qin (2010)

Czechoslovak Mathematical Journal

In this paper, we determine all the normal forms of Hermitian matrices over finite group rings R = F q 2 G , where q = p α , G is a commutative p -group with order p β . Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over R through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.

Currently displaying 1 – 20 of 28

Page 1 Next