The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Landau’s function for one million billions

Marc Deléglise, Jean-Louis Nicolas, Paul Zimmermann (2008)

Journal de Théorie des Nombres de Bordeaux

Let 𝔖 n denote the symmetric group with n letters, and g ( n ) the maximal order of an element of 𝔖 n . If the standard factorization of M into primes is M = q 1 α 1 q 2 α 2 ... q k α k , we define ( M ) to be q 1 α 1 + q 2 α 2 + ... + q k α k ; one century ago, E. Landau proved that g ( n ) = max ( M ) n M and that, when n goes to infinity, log g ( n ) n log ( n ) .There exists a basic algorithm to compute g ( n ) for 1 n N ; its running time is 𝒪 N 3 / 2 / log N and the needed memory is 𝒪 ( N ) ; it allows computing g ( n ) up to, say, one million. We describe an algorithm to calculate g ( n ) for n up to 10 15 . The main idea is to use the so-called -superchampion...

Le diagramme du treillis permutoèdre est intersection des diagrammes de deux produits directs d'ordres totaux

Claude Le Conte de Poly-Barbut (1990)

Mathématiques et Sciences Humaines

Deux codages sont utilisés sur l’ensemble des permutations ou ordres totaux sur un ensemble fini à n éléments et à chacun de ces codages est associé un produit direct d’ordres totaux. On démontre que le diagramme du treillis permutoèdre (ou ordre de Bruhat faible sur le groupe symétrique S n ) est intersection des diagrammes des deux produits directs de n - 1 ordres totaux à 2 , 3 , . . . , n éléments.

Currently displaying 1 – 2 of 2

Page 1