Previous Page 3

Displaying 41 – 50 of 50

Showing per page

Violations of the Ingleton inequality and revising the four-atom conjecture

Nigel Boston, Ting-Ting Nan (2020)

Kybernetika

The entropy region is a fundamental object of study in mathematics, statistics, and information theory. On the one hand, it involves pure group theory, governing inequalities satisfied by subgroup indices, whereas on the other hand, computing network coding capacities amounts to a convex optimization over this region. In the case of four random variables, the points in the region that satisfy the Ingleton inequality (corresponding to abelian groups and to linear network codes) form a well-understood...

Wildness in the product groups

G. Hjorth (2000)

Fundamenta Mathematicae

Non-abelian Polish groups arising as countable products of countable groups can be tame in arbitrarily complicated ways. This contrasts with some results of Solecki who revealed a very different picture in the abelian case.

Currently displaying 41 – 50 of 50

Previous Page 3