Sylow 2-subgroups of solvable Q-groups.
A finite group whose irreducible characters are rational valued is called a rational or a Q-group. In this paper we obtain various results concerning the structure of a Sylow 2-subgroup of a solvable Q-group.
A finite group whose irreducible characters are rational valued is called a rational or a Q-group. In this paper we obtain various results concerning the structure of a Sylow 2-subgroup of a solvable Q-group.
For a group and a positive real number , define to be the number of integers less than which are dimensions of irreducible complex representations of . We study the asymptotics of for algebraic groups, arithmetic groups and finitely generated linear groups. In particular we prove an “alternative” for finitely generated linear groups in characteristic zero, showing that either there exists such that for all large , or is virtually abelian (in which case is bounded).
We show that the explicit formula of Stanley-Féray-Śniady for the characters of the symmetric group has a natural extension to the generalized characters. These are the spherical functions of the unbalanced Gel’fand pair .